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Heat capacity is important in explaining certain phenomena, such as why water is a good coolant or why
it makes an effective water bath for experiments. There are two different kinds of heat capacities,
constant volume, which uses internal energy, and constant pressure, which uses enthalpy. We examined
the equipartion theorem, which breaks down the energies associated with each degree of freedom. The
three types of energies are rotational, vibrational, and translational. We also looked at the data as a Van
der Waal’s gas and constant volume heat capacities. We used two different experimental methods to find
the heat capacity ratios: adiabatic expansion method and sound velocity method. The results from the
sound velocity method matched literature values almost exactly, while the results from the adiabatic
expansion method were not as accurate. All of the models we looked at showed that the data for nitrogen
was less accurate when vibrational energies were accounted for, carbon dioxide sat somewhere in-
between and didn’t follow either one, and argon remained the same either way. This is because
vibrational contributions at room temperature are very small. It would be best to do more trials and test
different gases to further explain the trends of heat capacity ratios. It would be interesting to see how
different molecular shapes of atoms affect the heat capacities.



Introduction

Heat Capacity is a measure of the ability of a chemical system to absorb energy for a given
increase in temperature in Kelvin. Two common forms of heat capacity are constant volume heat
capacity, Cy, and constant pressure heat capacity, C,. We looked at both constant pressure and
constant volume heat capacity for argon, nitrogen, and carbon dioxide. The equation for constant

volume heat capacity is C,, = (aU/ a1)v Where U is internal energy. The equation for constant

pressure heat capacity is C, = (aH / aT)p» Where H is enthalpy. We were interested in the heat

. : C . :
capacity ratio,y = p/ c.-' We were able to compare the values we received to the ideal gas
v

values of 5/2 R for Cp, 3/2 R for Cy, and 5/2 R for y.2 Heat capacity is important, because it
describes how substances can absorb heat without a large change in temperature. Water, for
example, has a very large heat capacity, allowing it to absorb a lot of heat with only a small
increase in temperature. This is the reason why water is a great coolant and also explains why
water baths are so effective in experiments. We can describe molecules by degrees of freedom,
described in Garland.? The number of degrees of freedom for a molecule is given by 3N, where N
is the number of atoms in the molecule. There are three different types of degrees of freedom,
which are translational, rotational, and vibrational. These classify them by the methods in which
they change configuration or position, including bending, stretching, and rotating. For
translational there are 3 different degrees of freedom. For rotational there are 2 degrees of
freedom for linear molecules and 3 degrees of freedom for non-linear. This is because a linear
molecule only requires two axes. In a nonlinear molecule, there is an appreciable magnitude
moment of inertia and requires three rotational degrees of freedom to describe its orientation. In
a diatomic molecule, such as nitrogen gas, it can only stretch. For vibrational degrees of freedom
there are 3N-5 for linear and 3N-6 for non-linear. The equipartition theorem breaks down the
energies associated with each degree of freedom. For each degree of freedom, %2RT per mole of
kinetic energy is contributed to the total energy; however, vibrational adds an additional %2RT of
potential energy. This makes the equation for total internal energy, Uror = Urrans + Urot +
Uyip-! Now that we know U, we can use it to calculate the heat capacity ratios. We know that for

an ideal gas C, — C, = R, so we can look at the heat capacity ratio as C, + RC,. We can also
model the results as a Van der Waals gas using the theoretical equation,y = 1 + Ci (1 + %), and
2a

2by _
~+>)"L
2% 14

. . Mc?
the experimental equation, y = % (1

Experimental Procedure | Openube
There were two different experimental methods, explained in

Garland, that we compared: the adiabatic expansion method Van: I

and the sound velocity method.? For the adiabatic expansion /f
method, we had a carboy connected to the observed gas and e o
a manometer, observed in Figure 1. Gas was flushed through

the carboy for 15 minutes to assure only the observed gas

N/

was inside the carboy. This was allowed to reach room
temperature, which is when P; was taken. Then, the stopper
was pulled out of the carboy; releasing the gas adiabatically
and allowing the pressure inside the carboy come to 4.
equilibrium with the room pressure, P>. The stopper was Féw
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replaced and the system, under constant volume, came back to room temperature for another 15
minutes. After 15 minutes, we recorded the pressure on the manometer, P3. We were able to
calculate the heat capacity ratio from the three pressures recorded with the equation,
In (Pl) In (Pl)
Y= In(P,y/ In(py,
For the second experimental method, we needed to calculate the speed of sound using Kundt’s
tube. There was a microphone attached to a movable piston at one end and a speaker unit on the
other, both were attached to an oscilloscope, observed in Figure 2. The frequencies we examined
were 1kHz for N2 and COz and 2kHz for Ar. We moved the microphone closer to the speaker until
a straight-line pattern was observed on the oscilloscope; this represented a phase shift of 0 or
180 degrees. We continued to move it closer, measuring the distance between each period. From
there, we calculated the speed of
sound, ¢ = 1 * frequency, where A is
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: — t .
Audio osc. | Horiz. | Soope | vert, microphone ravet M2 /RT, where c is the speed of sound
= and M is molar mass.
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Figure 3: Displays the heat capacity ratios for argon, nitrogen, and carbon dioxide for the
adiabatic expansion method compared to the literature values found in Atkins.3 Values reported
with an error of £ 0.01.
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Figure 4. Displays the heat capacities for argon, nitrogen, and carbon dioxide for the sound
velocity method compare to literature values found in Atkins.3 Values reported with an error of +
0.002.
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Figure 5. Displays the sound velocity method data compared to the equipartition theorem
theoretical values with and without vibrational energies. Values are reported with an error of *
0.002.
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Figure 6. Displays the sound velocity method experimental data compared to theoretical
constant volume heat capacities with and without vibrational energy. One is argon, two is
nitrogen, and three is carbon dioxide.
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Figure 7. Displays the sound velocity experimental data compared to theoretical values found
from Van der Waals equation. One is argon, two is nitrogen, and three is carbon dioxide.

Discussion

The sound velocity method results came out to be a lot more accurate than the adiabatic
expansion method. The experimental heat capacity ratios we found for argon, nitrogen, and
carbon dioxide for the adiabatic method were 1.53, 1.36, and 1.26 respectively; these values
were reported with an error of + 0.01 and can be found in Figure 3. The experimental heat
capacity ratios for argon, nitrogen, and carbon dioxide for the sound velocity method were 1.668,



1.409, and 1.290 respectively; these values were reported with an error of + 0.002 and can be
found in Figure 4. We compared the values for both methods to literature values found in Atkins.
The heat capacity ratios in Atkins for argon, nitrogen, and carbon dioxide were 1.667, 1.400, and
1.289 respectively.3 As shown in Figures 3 and 4, the sound velocity method values are closer to
the literature values than the adiabatic expansion. This could be from a variety of different
reasons. The biggest reason is because the adiabatic expansion method has a lot of room for
error. It is dependent on temperatures being in equilibrium and changing and maintaining the
pressure inside the carboy, which makes it more difficult to be accurate. Figure 5 takes a look the
heat capacity ratios with vibrational energies using the equipartition theorem. Overall, we found
that the theory doesn’t match up with the actual results very well. We looked at the sound
velocity method to compare, since the results were a lot more accurate. We can see for argon that
there is no change in the heat capacity ratio, 1.667, when vibrations are accounted for. This is
because argon is a monatomic molecule and can be seen as being nearly ideal, so it follows
classical theory really well. Nitrogen and carbon dioxide both have lower heat capacity ratios,
1.286 and 1.154, with vibrational energies included. This is because vibration energy is highly
quantized and depends strongly on room temperature. For most gaseous diatomic molecules,
such as nitrogen, vibrational contribution is very small, because vibrational modes are only
partially active. We would have to see a temperature of 4000K before vibrational contributions
in nitrogen are seen.? For carbon dioxide, it doesn’t follow either theory very well. The
equipartition theorem can only be used to calculate the limits of vibrational contribution in
polyatomic models. We also looked at theoretical constant volume heat capacities, which were
12.47,20.79, and 20.79 for argon, nitrogen, and carbon dioxide. Our experimental results for the
sound velocity method came out to be very similar, besides for carbon dioxide, as seen in Figure
6. Again, when taking into account the vibrational energies, the heat capacities are far off for
nitrogen and carbon dioxide: 29.10 and 54.04. This is for the same reasons as explained
previously. Lastly, we looked at theoretical heat capacities using Van der Waal's equation. These
results ended up being similar to the results for the equipartition theorem. The theoretical values
we found are displayed in Figure 7 as 1.669, 1.402, and 1.404 for argon, nitrogen, and carbon
dioxide respectively, with experimental results of 1.665, 1.407, and 1.280. Like we have seen
previously, argon and nitrogen follow classical theory very well, while carbon dioxide doesn’t.
When adding in vibrational energies, the same trends are seen: nitrogen and carbon dioxide heat
capacity ratios are lower, 1.287 and 1.156.

Conclusion

In conclusion, we measured the heat capacity ratios using two different experimental methods.
The sound velocity method came to good agreement with literature values, while the adiabatic
method was not as accurate. This could have been due to a variety of different things, but most
likely the nature of the experiment. The adiabatic expansion method leaves a large room for
experimental error, making the data less accurate and further away from literature values. It
would be best to run the experiment a few more times to get more accurate data. We also found
that when adding vibrational energy to the equation the heat capacity was less accurate, except
for argon where it was the same. Nitrogen matched all the theories well without vibrational
energy, while carbon dioxide didn’t match either very well. This trend was observed no matter
what way we looked at the data. We looked at the equipartition theorem, the Van der Waal’s, and
constant volume heat capacities. All three of these theories had similar results. In order to fully
see how the heat capacity ratios vary, it would be smart to examine even more gasses and trials.



It would be interesting to look at gasses at different temperatures with different molecular
shapes to see how adding and removing vibrational energies from the equation would change

the overall heat capacity ratios.
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